"Attention has focused on oil insecurity, and rightly so, but it is not the same as food insecurity. An empty gas tank is one thing, an empty stomach another. And while there are substitutes for oil, there are none for food." –Lester R. Brown, Plan B 4.0: Mobilizing to Save Civilization.
Chapter 1. Selling Our Future: Plan B—A Plan to Save Civilization
Plan B is the alternative to business as usual. Its goal is to move the world from the current decline and collapse path onto a new path where food security can be restored and civilization can be sustained. Just as the trends that are behind the current deterioration in the food situation go far beyond agriculture itself, so too must the response. In times past it was the Ministry of Agriculture that held the key to expanding agricultural research, expanding credit to farmers, and all the other obvious things that fall within its province, but securing future food supplies now depends on the mobilization of our entire society.
For these reasons Plan B is far more ambitious than anything the world has ever undertaken, an initiative that has no precedent in either scale or urgency. It has four components: cutting net carbon dioxide emissions 80 percent by 2020, stabilizing population at 8 billion or lower, eradicating poverty, and restoring the earth’s natural systems, including its soils, aquifers, forests, grasslands, and fisheries. The ambitiousness of this plan is not driven by perceived political feasibility but by scientific reality.
The plan to cut carbon emissions involves dramatically raising energy efficiency worldwide, investing in the massive development of the earth’s renewable energy resources, banning deforestation, and planting trees by the billion. Plan B essentially outlines a transition from an economy powered mainly by oil, coal, and natural gas to one powered largely by wind, solar, and geothermal energy.
The Plan B goal of stabilizing population is set at 8 billion or lower simply because I do not think world population will ever reach the 9.2 billion projected by U.N. demographers for 2050. To begin with, the vast majority of the 2.4 billion people projected to be added by 2050 will be born in developing countries—countries where the land and water resource base is deteriorating and hunger is spreading. Simply put, many support systems in these countries are already in decline, and some are collapsing. The question is not whether population growth will come to a halt before reaching 9.2 billion but whether it will do so because the world shifts quickly to smaller families or because it fails to do so—and population growth is checked by rising mortality. Plan B embraces the reduced fertility option. 66
Eradicating poverty is a priority goal for three reasons. One, in combination with giving women everywhere access to reproductive health care and family planning services, it is the key to accelerating the global shift to smaller families. It also helps bring impoverished nations into the international community, giving them a stake in such matters as stabilizing climate. When people are not sure where their next meal is coming from, it is difficult for them to get excited about trying to stabilize the earth’s climate. And third, eradicating poverty is the humane thing to do. One of the hallmarks of a civilized society is the capacity to care about others.
The fourth component of Plan B involves repairing and protecting the natural systems that support humankind. This includes conserving soil, banning deforestation, promoting reforestation, restoring fisheries, and making a worldwide effort to protect aquifers by raising water productivity. Unless we can reverse the deterioration of these systems we are unlikely to reverse the rise in hunger.
Plan B is an integrated program with four interdependent goals. We are not, for example, likely to stabilize population unless we can also eradicate poverty. Conversely, we cannot restore the earth’s natural systems without stabilizing population and climate, and we are not likely to stabilize climate unless we also stabilize population. Nor can we eradicate poverty without restoring the earth’s natural systems.
The ambitiousness of this save-our-civilization plan is matched by the urgency with which it must be implemented. Success depends on moving at wartime speed, restructuring the world energy economy at a pace reminiscent of the restructuring of the U.S. industrial economy in 1942 following the attack on Pearl Harbor. The United States shifted from producing cars to turning out planes, tanks, and ships within a matter of months. The current restructuring cannot be achieved without a fundamental reordering of priorities. And it will not be accomplished without sacrifice. For example, the key to the 1942 industrial restructuring was a ban on the sale of new cars, a ban that lasted nearly three years. 67
We face an extraordinary challenge, but there is much to be upbeat about. All the problems we face can be dealt with using existing technologies. And almost everything we need to do to move the world economy off the collapse path and back onto an environmentally sustainable path has already been done in one or more countries. For example, more than 30 countries have essentially stabilized their population size. 68
We see the components of Plan B in technologies already on the market. On the energy front, for example, we can get more energy from an advanced-design wind turbine than from an aging oil well. The new plug-in gas-electric hybrids coming to market, like the Chevrolet Volt, can get up to 150 miles per gallon. In the Plan B energy economy of 2020, most of the U.S. fleet will be plug-in hybrids and all-electric cars, and they will be running largely on wind-generated electricity for the equivalent of less than $1 a gallon of gasoline. 69
The world is in the early stages of a revolution in lighting technology. Some time ago we learned that a compact fluorescent could provide the same lighting as the century-old incandescent bulb but would use only one fourth as much electricity. This was exciting news. Now we are looking at a still more-advanced lighting technology—the light-emitting diode (LED)—which uses 15 percent of the electricity used by an incandescent bulb. In addition, motion sensors can turn off lights in unoccupied spaces, and other sensors can adjust lighting intensity in response to the daylight available. Shifting from incandescent bulbs to LEDs and installing motion sensors and dimmers can reduce electricity used for lighting by more than 90 percent. 70
As for Plan B models at the national level, Denmark today gets more than 20 percent of its electricity from wind and has plans to push this to 50 percent. Seventy-five million Europeans get their residential electricity from wind farms. Some 27 million Chinese homes get their hot water from rooftop solar water heaters. Iceland, which heats 90 percent of its homes with geo¬thermal energy, has virtually eliminated the use of coal for home heating. The Philippines gets 26 percent of its electricity from geothermal power plants. 71
We see what a Plan B world could look like in the reforested mountains of South Korea. Once a barren, almost treeless country, the 65 percent of South Korea now covered by forests has checked flooding and soil erosion, returning environmental health and stability to the Korean countryside. The United States—which over the last quarter-century retired one tenth of its cropland, most of it highly erodible, and shifted to conservation tillage practices on part of the remainder—has reduced soil erosion by 40 percent. Meanwhile, the grain harvest expanded by one fifth. 72
Some of the most innovative leadership has come from cities. Curitiba, Brazil, began restructuring its transport system in 1974, and in the two decades that followed the city cut car traffic by 30 percent while its population doubled. Amsterdam has a diverse urban transport system where some 40 percent of all trips within the city are taken by bicycle. And the transport diversification plan in Paris that includes a prominent role for the bicycle is intended to reduce car traffic by 40 percent. London is taxing cars entering the city center and investing the revenue in upgrading public transit. 73
The challenge is not only to build a new economy but to do it at wartime speed before we miss so many of nature’s deadlines that the economic system begins to unravel. Participating in the construction of this enduring new economy is exhilarating. So is the quality of life it will bring. A world where population has stabilized, forests are expanding, and carbon emissions are falling is within our grasp.
ENDNOTES:
66. U.N. Population Division, op. cit. note 5.
67. Harold G. Vatter, The US Economy in World War II (New York: Columbia University Press, 1985), p. 13; Alan L. Gropman, Mobilizing U.S. Industry in World War II (Washington, DC: National Defense University Press, August 1996); Doris Kearns Goodwin, No Ordinary Time—Franklin and Eleanor Roosevelt: The Home Front in World War II (New York: Simon & Schuster, 1994), p. 316.
68. U.N. Population Division, World Population Prospects: The 2008 Revision, Extended Dataset, CD-ROM (New York: 9 April 2009).
69. CalCars, “All About Plug-In Hybrids,” at www.calcars.org, viewed 9 June 2009; General Motors, “Imagine: A Daily Commute Without Using a Drop of Gas,” at www.chevrolet.com/electriccar, viewed 8 August 2008.
70. Larry Kinney, Lighting Systems in Southwestern Homes: Problems and Opportunities, prepared for DOE, Building America Program through the Midwest Research Institute, National Renewable Energy Laboratory Division (Boulder, CO: Southwest Energy Efficiency Project, June 2005), pp. 4–5; CREE LED Lighting, “Ultra-Efficient Lighting,” at www.creelighting.com/efficiency.htm, viewed 17 April 2009.
71. Denmark from Global Wind Energy Council (GWEC), “Interactive World Map,” at www.gwec.net/index.php?id=126, viewed 29 May 2009, and from Flemming Hansen, “Denmark to Increase Wind Power to 50% by 2025, Mostly Offshore,” Renewable Energy Access, 5 December 2006; GWEC, Global Wind 2008 Report (Brussels: 2009), p. 13, with European per person consumption from European Wind Energy Association, “Wind Power on Course to Become Major European Energy Source by the End of the Decade,” press release (Brussels: 22 November 2004); China’s solar water heaters from Werner Weiss, Irene Bergmann, and Roman Stelzer, Solar Heat Worldwide: Markets and Contribution to the Energy Supply 2007 (Gleisdorf, Austria: International Energy Agency, Solar Heating & Cooling Programme, May 2009), p. 20; Iceland National Energy Authority and Ministries of Industry and Commerce, Geothermal Development and Research in Iceland (Reykjavik: April 2006), p. 16; share of electricity calculated by Earth Policy Institute using installed capacity from Ruggero Bertani, “World Geothermal Generation in 2007,” GHC Bulletin, September 2007, p. 9; capacity factor from Ingvar B. Fridleifsson et al., “The Possible Role and Contribution of Geothermal Energy to the Mitigation of Climate Change,” in O. Hohmeyer and T. Trittin, eds., IPCC Scoping Meeting on Renewable Energy Sources, Proceedings (Luebeck, Germany: 20–25 January 2008), p. 5; total electricity generation from “World Total Net Electricity Generation, 1980–2005,” in DOE, EIA, International Energy Annual 2005 (Washington, DC: 13 September 2007).
72. Se-Kyung Chong, “Anmyeon-do Recreation Forest: A Millennium of Management,” in Patrick B. Durst et al., In Search of Excellence: Exemplary Forest Management in Asia and the Pacific, Asia-Pacific Forestry Commission (Bangkok: FAO Regional Office for Asia and the Pacific, 2005), pp. 251–59; Daniel Hellerstein, “USDA Land Retirement Programs,” in USDA, Agricultural Resources and Environmental Indicators 2006 (Washington, DC: July 2006); USDA, ERS, Agri-Environmental Policy at the Crossroads: Guideposts on a Changing Landscape, Agricultural Economic Report No. 794 (Washington, DC: January 2001); USDA, op. cit. note 6.
73. Molly O’Meara, Reinventing Cities for People and the Planet, Worldwatch Paper 147 (Washington, DC: Worldwatch Institute, June 1999), p. 47; City of Amsterdam, “Bike Capital of Europe,” at www.toamsterdam.nl, viewed 2 July 2009; Serge Schmemann, “I Love Paris on a Bus, a Bike, a Train and in Anything but a Car,” New York Times, 26 July 2007; Transport for London, Central London Congestion Charging: Impacts Monitoring (London: various years).
Copyright © 2009 Earth Policy Institute